STUDY OF LAYERS OF METAL NANOPARTICLES ON SEMICONDUCTOR WAFERS FOR HYDROGEN DETECTION

 M. Muller ${ }^{* 1,2}$ J. Zavadil ${ }^{1}$, K.Zdansky ${ }^{1}$, K. Piksova ${ }^{2}$ 1) Inst. of Photonics and Electronics, Academy of Sciences of the Czech RepublicCukrovarnická 10, 16253 Prague 6, Czech Rep.
2) Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague, V Holešovičkách 2, Prague, Czech Republic e-mail: martin.muller@fjfi.cvut.cz

Abstract

In this work, colloid solutions of metal Pt and Pd nanoparticles both by direct reduction of metal salts in water solutions and by reverse micelle technique were prepared. Layers of the nanoparticles on InP and GaN substrates using electrophoretic deposition were prepared. Metal nanoparticles in the colloid and deposited metal nanoparticles on semiconductor surface were characterised by SEM. Schottky diodes were fabricated by application of colloidal graphite or silver paste on nanoparticle layer. Diodes exhibited excellent current-voltage rectifying characteristics. Schottky barier height of 1.03 eV was calculated for $\mathrm{GaN} / \mathrm{Pd}$ structure and 0.78 eV for $\mathrm{InP} / \mathrm{Pd}$ structure. A rapid increase in current under the flow of H2/N2 was observed and measured for different hydrogen concentration and voltage applied on diode.

Metall nanoparticles in water solutions

Reduction of $\mathbf{H}_{2} \mathbf{P t C l}_{6}$ and $\mathbf{P d C l}_{2}$ by hydrazine, boronhydrate or methanol

Reaction with methanol
$\mathrm{PtCl}_{6}^{2-}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{PtCl}_{4}^{2-}+\mathrm{HCHO}+2 \mathrm{H}^{+}+2 \mathrm{Cl}$ $\mathrm{PtCl}_{6}^{2-}+\mathrm{CH}_{3} \mathrm{OH}->\mathrm{PtCl}_{4}^{2-}+\mathrm{HCHO}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}$
$\mathrm{PtCl}_{4}{ }^{2.2}+2 \mathrm{CH}_{3} \mathrm{OH}->\mathrm{Pt}^{0}+\mathrm{HCHO}+4 \mathrm{H}^{+}+4 \mathrm{Cl}^{-}$

Reaction with hydrazine
$\mathrm{PtCl}_{6}{ }^{2-}+\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{Pt}^{0}+4 \mathrm{HCl}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}$

Reduction reaction is very fast, followed by nucleation Reduction reaction is very fast, followed by nucleation
and growth of nanoparticles. Stabilisation of colloidal solution is provided by citrate ions. Growth of palladium and platinum nanoparticles is connected with change of or of solution from colouncon

WAVELENGTH $\lambda(\mathrm{nm})$

Metal nanoparticles in water-iln=oill microemulsiluons

Reverse micelles surfactant AOT in isooctane
\qquad diameter controlled and monodisperse $\underbrace{\substack{\text { ander }}}_{0,}$
The diameter of nanoparticles is 10 nm when the ratio of molar concentrations of AOT and water content is equal to 5 . UV-VIS absorbtion spectra shows a peak at 280 nm due to plasmon absorbtion by palladium particles and a peak a 220-240 nm due to AOT absorbtion.

Electrophoretic deposition

the cell is filled by microemulsion of metal nanoparticles in isooctane and the voltage in order of tens of volts is applied.
Pictures A and B show an hour deposition of Pt nanoparticles in AOT reverse micelles. The semiconductor wafer was conected to a positive electrode in the
case of the pic. A and to a negative electrode in the case of the pic. B It is clearly case of the pic. A and to a negative electrode in the case of the pic. B. It is
seen, that metal nanoparticles in solution are mostly positively charged. Pictures C and D show eight hour deposition of Pt nanoparticles under same voltage polarity as pictures above. Longer deposition on negative electrode leads to higher coverage by metal nanoparticles whereas longer deposition on positive electrode leads to higher coverage by organic material from reverse micelle solution.

Situation
sensitivity

Current-Voltage characteristics

A potencial barrier arises at the interface of metal nanoparticle and semiconductor wafer. Current-voltage (IV) characteristics is given by thermionic-emission-difusion theory. Current density dependes on temperature, Schottky barrier height and voltage by equation

Hydrogen detection

Hydrogen molecule is dissociated by the palladium or platinum nanoparticles, single hydrogen atoms are absorbing by nanoparticles. These hyrogen atoms get into nanoparticle-semiconductor interface and create a dipole layer which decreases the Schottky barrier height. The barrier decrease is measured as an increase in current.

Pt nanoparticlles based structures

Acknowlledgement

The work has been supported by the grant KAN4012200801 of Academy of Sciences of the Czech Republic and by Grant Agency of the Czech Republic, grant number 102/09/1037

References

[1]H. I. Chen, Y. I. Chou and C. Y. Chu, Sens. Actuat. B85(2002) 10-18 C. Liu and H. I. Chen, IEEE Electron Device Letters [3]K. Zdansky, P. Kacerovsky, J. Zavadil, J. Lorincik and A.Fojitik, Nanoscale
Res.Lett. 2(2007) 450-455.

